

## **LUNG CANCER INCIDENCE AND** MORTALITY WITH EXTENDED **FOLLOW-UP IN THE NLST**

JTO / 2019



# THE CLINICAL QUESTION

LDCT arm in the NLST persist at extended followup?

Does the reduction in lung cancer mortality in the

### The originally reported reduction in lung

TAKE HOME MESSAGE

cancer deaths in the LDCT arm vs. CXR arm was sustained at extended follow-up (median 12.3 years), with a NNS of 303.



#### The NLST reported a 20% reduction in lung cancer mortality in high-risk current and former smokers who were screened annually

BACKGROUND

- (3x) with LDCT vs. with CXR. The median follow-up in the NLST was 6.5 years. An additional 6 years of data are now available for mortality. This analysis of extended follow-up helps to determine whether LDCT screening just delayed lung cancer death by a few years or actually prevented it. The NLST also reported a statistically significant increase in lung cancer incidence in the LDCT arm, possibly suggesting over-
- diagnosis. An additional 5 years of data are now available for lung cancer incidence. This analysis evaluates if the increase persists at extended follow-up.

STUDY DESIGN



#### Interventions: LDCT or single-view CXR arm, with 3 annual protocol screens for each modality

Enrollment: 26,722 and 26,730 participants were

Study design: Randomized, multicenter trial

- randomized to the LDCT and CXR arms, respectively at 33 U.S. medical institutions
- between 2002-2004 Primary outcomes: lung cancer mortality and lung cancer incidence
- **POPULATION**

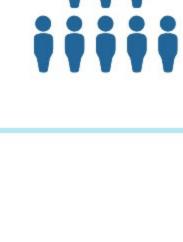
#### At least 30 pack-years smoking history who Were either current smokers or had quit within the past 15 years

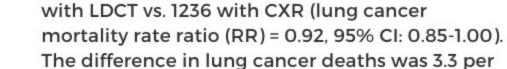
#### Exclusion criteria:

Inclusion criteria

Previous lung cancer diagnosis

Patients aged 55-74 with


- CT scan in the prior 18 months
- Unexplained 15 lb weight loss in the year before enrollment Hemoptysis
- history were similar across arms Sex, male: 59%


#### Age, 55-59: 42.8% Median pack-years: 48 Current smoker: 48.2%

Baseline characteristics

Baseline participant demographics and smoking

**OUTCOMES** 





Primary outcomes:

years in each arm.

is a significant decrease in lung cancer mortality with LDCT. All-cause mortality: 5253 total deaths with LDCT vs. 5366 with CXR, for a difference across arms of

to the original NSS estimate of 320.

mortality between groups.

Secondary outcomes:

For mortality, the median follow-up time was 12.3

Lung cancer mortality: 1147 lung cancer deaths

1000, translating into a NNS of 303. This is similar

RR was 0.89 (95% CI: 0.80-0.997). Thus, there

4.2 per 1000 (95% CI: -2.6 to 10.9). Thus, there was no statistically significant reduction in all-cause

The dilution-adjusted lung cancer mortality

years in each arm. Lung cancer incidence: 1701 lung cancer cases with LDCT vs. 1681 with CXR, giving a rate ratio of 1.01 (95% CI: 0.95-1.09). Thus, the lung cancer incidence was similar in both groups.

For incidence, the median follow-up time was 11.3

stage IV. Adverse events: Death and infection

There was a significant stage shift with the LDCT arm having a higher proportion of cases that were stage I and a lower proportion of cases that were

# COMMENTARY Not all home state registries participated in the linkage effort to assist with passive follow-up. The use of LDCT screening after the original trial periods was not

#### of that in the general population. The lack of a statistically significant effect for all-cause mortality at

period after screening.

ascertained.

None

**FUNDING** 

The lung cancer mortality results for the NLST were based on a cut-

Mortality rate ratio estimates in clinical trials may not be reflective

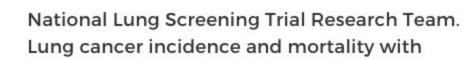
extended follow-up may be due to the dilution effect, i.e. too long a

off of a calendar date instead of a specified time period.

- SUGGESTED READING 1. Patz EF Jr, Greco E, Gatsonis C, Pinsky P, Kramer BS, Aberle DR. Lung cancer incidence and mortality in National Lung Screening Trial participants who underwent low-dose CT prevalence screening: a

retrospective cohort analysis of a randomized, multicenter,

diagnostic screening tool. Lancet Oncol. 2016 May;17(5):590-9.


2. Tammemagi MC, Schmidt H, Martel S, McWilliams A, Goffin JR, Johnston MR, et al. Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study. Lancet Oncol. 2017 Nov:18(11):1523-31. 3. Horeweg N, Scholten ET, de Jong PA, van der Aalst CM, Weenink C, Lammers JW, et al. Detection of lung cancer through low-dose CT

performance and interval cancers. Lancet Oncol. 2014 Nov;15(12):1342-

50. ARTICLE CITATION

screening (NELSON): a prespecified analysis of screening test





Screening Trial. J Thorac Oncol. 2019 Oct:14(10):1732-42.

extended follow-up in the National Lung